Mass personalization-a megatrend in industrial manufacturing and production-requires fast adaptations of robotics and automation solutions to continually decreasing lot sizes. In this paper, the challenges of applying robot-based automation in a highly individualized production are highlighted. To face these challenges, a framework is proposed that combines latest machine learning (ML) techniques, like deep learning, with high-end physics simulation environments. ML is used for programming and parameterizing machines for a given production task with minimal human intervention. If the simulation environment realistically captures physical properties like forces or elasticity of the real world, it provides a high-quality data source for ML. In doing so, new tasks are mastered in simulation faster than in real-time, while at the same time existing tasks are executed. The functionality of the simulation-driven ML framework is demonstrated on an industrial use case.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Simulation-driven machine learning for robotics and automation


    Beteiligte:

    Erscheinungsdatum :

    01.01.2019


    Anmerkungen:

    Fraunhofer IPA



    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629



    Robotics and automation

    IEEE | 2014

    Freier Zugriff

    Automation and robotics

    Montemerlo, Melvin | NTRS | 1988



    Automation and robotics

    Holcomb, Lee | NTRS | 1985


    Robotics and automation

    IEEE | 2015

    Freier Zugriff