In the last years, the use of indoor drones has increased significantly in many different areas. However, one of the main limitations of the potential of these drones is the battery life. This is due to the fact that the battery size has to be limited since the drones have a maximum payload in order to be able to take-off and maintain the flight. Therefore, a recharging process need to be performed frequently, involving human intervention and thus limiting the drones applications. In order to solve this problem, this master thesis presents an autonomous recharging system for a nano drone, the Crazyflie 2.0 by Bitcraze AB. By automating the battery recharging process no human intervention will be needed, and thus overall mission time of the drone can be considerably increased, broadening the possible applications. The main goal of this thesis is the design and implementation of a control system for the indoor nano drone, in order to control it towards a landing platform and accurately land on it. The design and implementation of an actual recharging system is carried out too, so that in the end a complete full autonomous system exists. Before this controller and system are designed and presented, a research study is first carried out to obtain a background and analyze existing solutions for the autonomous landing problem. A camera is integrated together with the Crazyflie 2.0 to detect the landing station and control the drone with respect to this station position. A visual system is designed and implemented for detecting the landing station. For this purpose, a marker from the ArUco library is used to identify the station and estimate the distance to the marker and the camera orientation with respect to it. Finally, some tests are carried out to evaluate the system. The flight time obtained is 4.6 minutes and the landing performance (the rate of correct landings) is 80%. ; Under de senaste åren har användningen av inomhusdrönare ökat betydligt på många olika områden. En av de största begränsningarna för dessa ...
Autonomous Recharging System for Drones: Detection and Landing on the Charging Platform
01.01.2019
Hochschulschrift
Elektronische Ressource
Englisch
DDC: | 629 |