IEEE International Conference on Robotics and Automation (ICRA), 2001, Seúl (Corea del Sur) ; Solving the direct kinematics of parallel spherical mechanisms with l legs is basically solving systems of l-1 second-order multinomials. This paper presents a recurrent expression for the control points of these multinomials when expressed in the Bernstein form. This result allows one to propose a technique for solving the direct kinematics of these mechanisms that takes advantage of the sub-division and convex hull properties of polynomials in the Bernstein form. Contrary to other numerical approaches, the one presented here is clearly less involved and, although it can be classified within the same category as interval-based techniques, it does not require any interval arithmetic computation. ; This work was supported by the project 'Computación mediante restricciones en robótica y gestión de recursos' (070-725). ; Peer Reviewed


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    On the computation of the direct kinematics of parallel spherical mechanisms using Bernstein polynomials


    Beteiligte:

    Erscheinungsdatum :

    01.01.2001



    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629



    On the direct kinematics problem of parallel mechanisms

    Seibel, Arthur / Schulz, Stefan / Schlattmann, Josef | BASE | 2018

    Freier Zugriff

    Hermite Interpolation using Bernstein Polynomials for Trajectory Generation

    A. Patterson / G. MacLin / M. Acheson et al. | NTIS | 2023


    Analysis of nonlinear electrical circuits using bernstein polynomials

    Arounassalame, M. | British Library Online Contents | 2012



    Direct Kinematics of Planar Parallel Mechanisms Based on Conformal Geometric Algebra

    Huang, Xiguang / Huang, Xu | British Library Online Contents | 2018