Surgeons can benefit from the cooperation with a robotic assistant during the repetitive execution of precise targeting tasks on soft tissues, such as brain cortex stimulation procedures in open-skull neurosurgery. Position-based force-to-motion control schemes may not be satisfactory solution to provide the manipulator with the high compliance desirable during guidance along wide trajectories. A new torque controller with non-linear force feedback enhancement (FFE) is presented to provide augmented haptic perception to the operator from instrument-tissue interaction. Simulation tests were performed to evaluate the system stability according to different non-linear force modulation functions (power, sigmoidal and arc tangent). The FFE controller with power modulation was experimentally validated with a pool of non-expert users using brain-mimicking gelatin phantoms (8%-16% concentration). Besides providing hand tremor rejection for a stable holding of the tool, the FFE controller was proven to allow for a safer tissue contact with respect to both robotic assistance without force feedback and freehand executions (50% and 75% reduction of the indentation depth, respectively). Future work will address the evaluation of the safety features of the FFE controller with expert surgeons on a realistic brain phantom, also accounting for unpredictable tissue's motions as during seizures due to cortex stimulation.


    Zugriff

    Download


    Exportieren, teilen und zitieren



    Titel :

    Non linear force feedback enhancement for cooperative robotic neurosurgery enforces virtual boundaries on cortex surface



    Erscheinungsdatum :

    2016-01-01



    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Klassifikation :

    DDC:    629




    Force Feedback Enhancement for Soft Tissue Interaction Tasks in Cooperative Robotic Surgery

    BERETTA, ELISA / NESSI, FEDERICO / FERRIGNO, GIANCARLO et al. | BASE | 2015

    Freier Zugriff

    Robotic Normalizing Force Feedback

    Kihlman, H. / van Duin, S. | SAE Technical Papers | 2005



    Review of robotic technology for stereotactic neurosurgery

    C. Faria / W. Erlhagen / M. Rito et al. | BASE | 2015

    Freier Zugriff