This paper proposes a network traffic control method to enhance model-based traffic control with data-driven online adaptive optimization. A macroscopic traffic flow model is first developed for the model prediction. Then, the model is further enhanced in real time based on the performance measurements using the adaptive optimization or learning algorithm. Integrating the data-driven optimization into the model-based predictive control, the proposed control method is able to identify the key model parameters and optimize the actual network performance. Experiments on a toy network are conducted to test the efficiency of the proposed control method. Simulation results show that the proposed method generates better control performance than the general model-based control method.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Enhancing Model-Based Traffic Signal Control with Data-Driven Adaptive Optimization


    Beteiligte:
    Zhang, Xuanyu (Autor:in) / Hu, Fuyu (Autor:in) / Huang, Wei (Autor:in)

    Kongress:

    22nd COTA International Conference of Transportation Professionals ; 2022 ; Changsha, Hunan Province, China


    Erschienen in:

    CICTP 2022 ; 346-356


    Erscheinungsdatum :

    08.09.2022




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Economic-Driven Adaptive Traffic Signal Control

    Jiang, Shan / Huang, Yufei / Jafari, Mohsen et al. | ArXiv | 2022

    Freier Zugriff

    Data-driven networked traffic signal multi-agent adaptive coordination control method

    JI HONGHAI / WANG LI / LIU SHIDA et al. | Europäisches Patentamt | 2023

    Freier Zugriff