This study investigates pedestrian crash severity through automated machine learning (AutoML), offering a streamlined and accessible method for analyzing critical factors. Utilizing a detailed dataset from Utah spanning 2010−2021, the research employs AutoML to assess the effects of various explanatory variables on crash outcomes. The study incorporates SHAP (SHapley Additive exPlanations) to interpret the contributions of individual features in the predictive model, enhancing the understanding of influential factors such as lighting conditions, road type, and weather on pedestrian crash severity. Emphasizing the efficiency and democratization of data-driven methodologies, the paper discusses the benefits of using AutoML in traffic safety analysis. This integration of AutoML with SHAP analysis not only bolsters predictive accuracy but also improves interpretability, offering critical insights into effective pedestrian safety measures. The findings highlight the potential of this approach in advancing the analysis of pedestrian crash severity.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Exploring the Determinants of Pedestrian Crash Severity Using an AutoML Approach


    Beteiligte:

    Kongress:

    International Conference on Transportation and Development 2024 ; 2024 ; Atlanta, Georgia



    Erscheinungsdatum :

    13.06.2024




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Exploring Factors Affecting Pedestrian Crash Severity Using TabNet: A Deep Learning Approach

    Rafe, Amir / Singleton, Patrick A. | ArXiv | 2023

    Freier Zugriff

    Exploring the Determinants of School Bus Crash Severity

    Abhay Lidbe / Emmanuel Kofi Adanu / Elsa Tedla et al. | DOAJ | 2022

    Freier Zugriff

    A Hierarchical Modeling Approach to Predict Pedestrian Crash Severity

    Jahangeer, Aafreen Asma / Anjana, Sai Suresh / Das, Vivek R. | Springer Verlag | 2019


    Exploring the Effect of Visibility Factors on Vehicle–Pedestrian Crash Injury Severity

    Harris, Laura / Ahmad, Numan / Khattak, Asad et al. | Transportation Research Record | 2023