This paper presents an approach for real-time autonomous obstacle avoidance for fixed-wing unmanned aerial vehicles (UAVs) for scenarios in which a UAV is required to stay close to a reference path. A key challenge is rapid trajectory generation around obstacles while accommodating vehicle constraints. A UAV model with nonlinear dynamic constraints provides more natural accommodation of the vehicle’s constraints than a kinematic model with linear constraints. This paper presents a method for using finite horizon model predictive control with a custom solver that offers low solution time. A comparative study of a high-fidelity model and a lower-fidelity counterpart is presented. Using the proposed method, the high-fidelity model provides better trajectories than the lower-fidelity counterpart, despite both having low computational requirement for onboard trajectory generation in an embedded platform.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Real-Time Autonomous Obstacle Avoidance for Fixed-Wing UAVs Using a Dynamic Model


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    02.04.2020




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt



    End-to-End Learning-Based Obstacle Avoidance for Fixed-Wing UAVs

    Wang, Teng / Xu, Zhao / Hu, Jinwen et al. | Springer Verlag | 2023


    Monocular Obstacle Avoidance Based on Inverse PPO for Fixed-wing UAVs

    Chai, Haochen / Su, Meimei / Lyu, Yang et al. | ArXiv | 2024

    Freier Zugriff


    Real-time obstacle avoidance for fixed-wing vehicles in complex environment

    Rong Ma / Wen Ma / Xiaolong Chen et al. | IEEE | 2016


    A Velocity qLMPC Algorithm for Path-Following with Obstacle Avoidance for Fixed-Wing UAVs

    Samir, Ahmed / Calderon, Horacio M. / Werner, Herbert et al. | IEEE | 2024