Three kinds of vehicle acoustic signals: cars, jeeps, and trucks are studied. According to the analysis of vehicles acoustic signal signature in time-domain and frequency-domain, a feature extraction algorithm is proposed which take the time-domain energy of the acoustic signals in different scales after wavelet decomposition as the feature vectors. An improved BP neural network classifier for vehicle target classification is designed. Experiment results have shown that the proposed feature extraction algorithm can distinguish different types of vehicles with satisfactory rate of correct recognition, and feature vector is robust. The classification accuracies can reach as high as 92%.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Vehicle Classification Using Acoustic Energy Signature in Wavelet Scale Space and Neural Network


    Beteiligte:
    Li, Jinghua (Autor:in) / Xu, Jiadong (Autor:in) / Li, Hongjuan (Autor:in)

    Kongress:

    First International Conference on Transportation Engineering ; 2007 ; Southwest Jiaotong University, Chengdu, China



    Erscheinungsdatum :

    09.07.2007




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Vehicle Classification Using Acoustic Energy Signature in Wavelet Scale Space and Neural Network

    Li, J. / Xu, J. / Li, H. et al. | British Library Conference Proceedings | 2007



    Vehicle-Type Classification Using Capsule Neural Network

    Mane, Deepak / Kharche, Chaitanya / Bankar, Shweta et al. | Springer Verlag | 2022


    Short-term forecasting of available parking space using wavelet neural network model

    Ji, Yanjie / Tang, Dounan / Blythe, Phil et al. | IET | 2015

    Freier Zugriff

    Real-Time Vehicle Classification Using Inductive Loop Signature Data

    Jeng, Shin-Ting (Cindy) / Ritchie, Stephen G. | Transportation Research Record | 2008