Concept learning and statistical pattern recognition applied in the domain of traffic accident liability judgement, this paper introduces the Intellectualized Liability Judgement Model (ILJM) into analyzing the relationships between the accident parties' fault action and the liability grade. On such basis, the theoretical framework of the intelligent support system of traffic accident liability judgement is proposed.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    An AI Application in the Liability Judgment of Traffic Accidents


    Beteiligte:
    Lu, Feng (Autor:in) / Ma, Jun (Autor:in)

    Kongress:

    Second International Conference on Transportation and Traffic Studies (ICTTS ) ; 2000 ; Beijing, China



    Erscheinungsdatum :

    12.07.2000




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    An AI Application in the Liability Judgment of Traffic Accidents

    Lu, F. / Ma, J. / American Society of Civil Engineers et al. | British Library Conference Proceedings | 2000


    Remote judgment method and system for urban traffic accidents

    YAN JUN / WANG FENGJU / WANG YONGFEI | Europäisches Patentamt | 2024

    Freier Zugriff

    Traffic accident liability judgment method based on traffic signal controller and video monitoring linkage

    CHEN FAGANG / LIANG ZIJUN / LI HONGTAO | Europäisches Patentamt | 2015

    Freier Zugriff

    Tram accidents under claim and liability law

    British Library Online Contents | 2008


    Traffic Accidents

    Wehner, Heinz‐Dieter / Madea, Burkhard / Rutty, Guy | Wiley | 2022