With the development of adaptive cruise control (ACC) vehicles, the traffic on freeways will be a mixture of ACC vehicles and traditional manual vehicles. It is a new challenge for freeway traffic state estimation. This paper proposes a neural network-based method to estimate the traffic speed under the mixed traffic. Three different neural network models are investigated using the simulation data, which is programmed by MATLAB. The results indicate that the neural network model with three input neurons (average speed of ACC vehicles, speeds from the microwave detector, and percentage of ACC vehicles) has a significant performance. Besides the fusion of measurements from the microwave detectors and ACC vehicles could improve the overall estimation accuracy, especially, the penetrate rate of ACC vehicles which is below 35%.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Real-Time Traffic Speed Estimation with Adaptive Cruise Control Vehicles and Manual Vehicles in a Mixed Environment


    Beteiligte:
    Li, Zhiwei (Autor:in) / Zhang, Jian (Autor:in) / Gu, Haiyan (Autor:in) / He, Shanglu (Autor:in)

    Kongress:

    16th COTA International Conference of Transportation Professionals ; 2016 ; Shanghai, China


    Erschienen in:

    CICTP 2016 ; 51-61


    Erscheinungsdatum :

    01.07.2016




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Cruise control of automated manual transmission vehicles

    Guihe Qin / Anlin Ge / Jiehong Zhao et al. | IET Digital Library Archive | 2003



    CRUISE CONTROL FOR LOW-SPEED VEHICLES

    LEE IAN | Europäisches Patentamt | 2025

    Freier Zugriff

    Real-Time Vehicles Speed Estimation

    Alwindi, Mohamed / Tombokti, Taha / Ganoun, Ali | IEEE | 2024