The paper brings forward a BP neural network model to forecast the real-time accuracy degree of estimated link average travel time based on data fusion method, and four variables (link average density, traffic volume, link average travel time based on floating car data, and floating car sampling size) are taken as input variables. Among these four variables, link average density and traffic volume can be obtained by loop detectors from SCATS, while link average travel time and floating car sampling size can be acquired with FCD. Then the reasons why those four variables are chosen are given with the support of statistical analysis. The model consists of three parts, the initial data generated module, data fusion module based on BP network and results analysis module. At last, an arterial road in Hangzhou is chosen as object link, 400 groups of data is being utilized to verify the model, and the results prove to be very satisfactory.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Real-Time Accuracy Degree Forecast of Estimated Link Average Travel Time Based on Data Fusion Method


    Beteiligte:
    Li, Hui-Bing (Autor:in) / Yang, Xiao-Guang (Autor:in)

    Kongress:

    The Twelfth COTA International Conference of Transportation Professionals ; 2012 ; Beijing, China


    Erschienen in:

    CICTP 2012 ; 1077-1086


    Erscheinungsdatum :

    23.07.2012




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Urban link travel time estimation using traffic states-based data fusion

    Zhu, Lin / Guo, Fangce / Polak, John W. et al. | IET | 2018

    Freier Zugriff

    Urban link travel time estimation using traffic states‐based data fusion

    Zhu, Lin / Guo, Fangce / Polak, John W. et al. | Wiley | 2018

    Freier Zugriff

    A Gaussian Mixture Model and Data Fusion Approach for Urban Travel Time Forecast

    Gemma, Andrea / Mannini, Livia / Carrese, Stefano et al. | IEEE | 2021


    Dynamic platoon dispersion model based on real-time link travel time

    Yao, Zhihong / Xu, Taorang / Cheng, Yang et al. | IET | 2019

    Freier Zugriff