This article takes three bicycle sharing systems as the research object, the Citi Bike of New York City, the Capital Bike share of Washington and the Divvy of Chicago. Adopting the method of Data mining, the corresponding long-term historic credit card data, bicycle sharing system location data and the land-use properties coming from three bicycle sharing systems are compared and analyzed to get bicycle sharing system in seasonal, spatial and temporal distribution, site symmetry aspects of trip characteristics, which provides support for bicycle sharing system Operational decisions.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    IC Card-Based Data Mining Characteristics of Urban Public Bicycles


    Beteiligte:
    Ye, Pengyao (Autor:in) / Chu, Chang (Autor:in) / Xu, Ling (Autor:in)

    Kongress:

    Fifth International Conference on Transportation Engineering ; 2015 ; Dailan, China


    Erschienen in:

    ICTE 2015 ; 2124-2132


    Erscheinungsdatum :

    25.09.2015




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Traffic accident characteristics and association analysis of electric bicycles based on data mining

    Lin, Yantao / Han, Fengchun / Ma, Sheqiang | British Library Conference Proceedings | 2022



    Bicycles in Urban Areas

    Twaddle, Heather / Schendzielorz, Tobias / Fakler, Oliver | Transportation Research Record | 2014


    Study on Travel Characteristics of Public Bicycles in Beijing

    Bian, Yang / Wu, Dongdong / Shu, Shinan et al. | ASCE | 2014


    Origin-Destination Distribution Prediction Model for Public Bicycles Based on Rental Characteristics

    Zhang, Shuichao / Ji, Yanjie / Sheng, Dong et al. | British Library Conference Proceedings | 2018