This study proposes a new method to determine node importance, which considers betweenness, the average shortest paths and the largest network connected sub-graph. This method not only attaches great importance to the nodes control ability in the network, but also emphasizes the interdependencies between each node more. Then, the comparison analysis is conducted to highlight the superiority of the proposed method. Finally, taking the subway network of Beijing as an example, its core site is discussed by simulation. The simulation results are consistent with the actual situation, and they demonstrate that the core site has a great potential in the whole railway network functions. In addition, the proposed normalization method has great progress over the predecessors’ research and widens the vision for later research.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A New Method to Determine Node Importance of an Urban Traffic Network


    Beteiligte:
    Zhu, Li (Autor:in) / Luo, Jinlong (Autor:in) / Zhao, Yongsheng (Autor:in) / Yang, Yang (Autor:in)

    Kongress:

    15th COTA International Conference of Transportation Professionals ; 2015 ; Beijing, China


    Erschienen in:

    CICTP 2015 ; 2827-2838


    Erscheinungsdatum :

    13.07.2015




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Traffic network traffic node importance identification method

    WANG QIULING / SHI PEIJU | Europäisches Patentamt | 2024

    Freier Zugriff

    Node Importance Assessment of Traffic Complex Network Based on C-Means Clustering

    Wang, Li ;Wei, Lu ;Zhang, Yong Zhong | Trans Tech Publications | 2011


    The Evaluation of Node Importance in Urban Road Network Based on Complex Network Theory

    Cao Hongmei / Liu Hao / Zhao Fang et al. | DOAJ | 2016

    Freier Zugriff

    Urban road network traffic speed prediction method based on graph convolutional network node association degree

    SHI ZHENQUAN / FENG SIYUN / SHI QUAN et al. | Europäisches Patentamt | 2021

    Freier Zugriff