In transportation networks, traffic sensors are used to monitor the operation of transportation systems. A multi-objective detector location optimization is proposed. Four components are included in the objective function:(1) to cover more origin-demand pairs; (2) to obtain the maximum traffic data; (3) to maximize the gain of travel time error, and (4) to maximize the gain of travel time predication. This problem is solved by applying a distance-based, multi-objective, evolution algorithm. Numerical experiments are conducted on a small simulated network and Sioux-Falls network, respectively. An analysis about the obtained Pareto frontier is done. The results demonstrate the feasibility and effectiveness of the approach.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    A Multi-Objective Detector Location Optimization Approach


    Beteiligte:
    Liu, Yang (Autor:in) / Zhu, Ning (Autor:in)

    Kongress:

    14th COTA International Conference of Transportation Professionals ; 2014 ; Changsha, China


    Erschienen in:

    CICTP 2014 ; 1788-1800


    Erscheinungsdatum :

    24.06.2014




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Multi-objective optimization of ambulance location in Antofagasta, Chile

    Carlos Olivos / Hernan Caceres | DOAJ | 2022

    Freier Zugriff

    Multi-Objective Optimization of Fastener Location in a Bolted Joint

    Zhang, B. / Brown, D. / St. Pierre, J. et al. | British Library Conference Proceedings | 2013




    Cooperative Optimization Method of UAV Swarm for Multi-objective High-Precision Location

    Li, Bowen / Ji, Xiaoting / Huang, Yuanling | Springer Verlag | 2022