Traffic volume prediction plays a critical role in transportation system and infrastructure management. This paper develops the first application of an unobserved component model (UCM) for monthly traffic volume forecasting. We compare the UCM model with simple linear regression, autoregressive integrated moving average (ARIMA), support vector machine (SVM), and artificial neural network (ANN) models based on monthly traffic volume data from a key corridor in New Jersey. As a general econometric method, the UCM decomposes the time series into trend, seasonal, and irregular components, exhibiting superiority for statistically modeling traffic data with cyclic or seasonal fluctuations. The numerical analysis shows that the UCM outperforms all of the other four models and generates reasonably accurate prediction results. This research indicates that UCM can be considered as an alternative approach to modeling traffic volumes.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Unobserved Component Model for Predicting Monthly Traffic Volume


    Beteiligte:
    Bian, Zheyong (Autor:in) / Zhang, Zhipeng (Autor:in) / Liu, Xiang (Autor:in) / Qin, Xiao (Autor:in)


    Erscheinungsdatum :

    04.10.2019




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Unbekannt



    The Methodology for Predicting the Monthly Urban Traffic Accidents

    Wang, Jiaxuan / Yuan, Shaoxin / Wang, Zhuanzhuan et al. | IEEE | 2022



    Estimation of Unobserved Vehicles in Congested Traffic from Probe Vehicle Samples

    Salahshour, B. / Nezafat, R. Vatani / Cetin, M. | ASCE | 2019


    Road monthly traffic volume prediction method based on SARIMA-NAR combined model

    WANG YOU / JIA RUXUE / YE YUNXIA et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    Unobserved content for on demand tours

    GUSIKHIN OLEG YURIEVITCH | Europäisches Patentamt | 2020

    Freier Zugriff