We encounter high dimensional data when using time series vector to describe the traffic flow of a certain link during some time period, or using flow data from different links to describe the traffic status of a region at a certain time point. This paper applies a dimensionality reduction method, named Locally Linear Embedding (LLE) to extract temporal and spatial features out of these high dimensional traffic flow data. LLE can visualize our data in a low dimension space, thus giving a vivid perspective on the emerging features. According to these features, we can put links into different clusters and better interpret the evolution of traffic patterns. Furthermore, comparison between linear dimensionality reduction method, PCA and LLE is carried out. The result shows that LLE has better performance.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Applying Locally Linear Embedding on Feature Extraction of Traffic Flow Data


    Beteiligte:
    Chen, Yenan (Autor:in) / Hu, Jianming (Autor:in) / Zhang, Yi (Autor:in) / Li, Di (Autor:in)

    Kongress:

    Seventh International Conference on Traffic and Transportation Studies (ICTTS) 2010 ; 2010 ; Kunming, China



    Erscheinungsdatum :

    26.07.2010




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Applying Locally Linear Embedding on Feature Extraction of Traffic Flow Data

    Chen, Y. / Hu, J. / Zhang, Y. et al. | British Library Conference Proceedings | 2010


    Feature extraction of hyperspectral image based on locally linear embedding

    Chao, D. / Huijie, Z. | British Library Online Contents | 2010


    Modal Identification Method Following Locally Linear Embedding

    Bai, J. / Yan, G. / Wang, C. | British Library Online Contents | 2013


    Kernel PCA for road traffic data non‐linear feature extraction

    Yong‐dong, Wang / Dong‐wei, Xu / Peng, Peng et al. | Wiley | 2019

    Freier Zugriff

    Kernel PCA for road traffic data non-linear feature extraction

    Yong-dong, Wang / Dong-wei, Xu / Peng, Peng et al. | IET | 2019

    Freier Zugriff