Video vehicle detection is more valuable and challenging than image vehicle detection for an intelligent transportation system. Due to the existing situation of vehicle blurring, occlusion, and scale changing in traffic monitoring, using static vehicle detection network often leads to the decrease of detection accuracy. In this paper, based on DFF method, we fuse a tracking algorithm to realize box propagation, and form a new video vehicle detection framework that considers both detection accuracy and speed. We extract feature maps in key frames, and propagate feature maps and boxes in non-key frames. Compared with static detectors, the proposed method greatly improves the consistency of video vehicle detection results. In addition, the detection performance of our method is obviously superior to the basic detector DFF in accuracy.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Feature and Box Propagation for Video Vehicle Detection


    Beteiligte:
    Yang, Yanni (Autor:in) / Song, Huansheng (Autor:in) / Dai, Zhe (Autor:in) / Zhang, Wentao (Autor:in) / Chen, Yan (Autor:in)

    Kongress:

    20th COTA International Conference of Transportation Professionals ; 2020 ; Xi’an, China (Conference Cancelled)


    Erschienen in:

    CICTP 2020 ; 777-788


    Erscheinungsdatum :

    09.12.2020




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Video Vehicle Detection Based on Local Feature

    Qian, Zhi Ming ;Shi, Hong Xing ;Yang, Jia Kuan | Trans Tech Publications | 2011




    Vehicle feature availability detection

    BENMIMOUN AHMED / MA CHENHAO / PAK TONY TAE-JIN et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    Vehicle feature availability detection

    BEN MIMOUN AHMED / MA CHENHAO / PARK TONY TAE-JIN et al. | Europäisches Patentamt | 2023

    Freier Zugriff