Recognizing travel patterns of the urban traffic is crucial for improving the performance of urban traffic control, thus mitigating the negative impacts of traffic congestions on our daily life. In recent years, tons of license plate sensors are deployed on urban traffic networks to monitor motorized traffic by recording the license plate number of passing vehicles at intersections. The large-scale license plate sensing data (LPS) do contain valuable vehicle origin-destination (O-D) information, which can be utilized for unveiling travel patterns of urban traffic. This study developed the structure of travel pattern recognition, which consists of three components: data pre-processing, feature extraction, and pattern recognition modeling. The architecture was tested and validated using the LPS data sets from Nanjing, China. The results showed six clusters has low sum of square errors (SSE) and high Calinski-Harabasz (CH) index, which can explain the changes of travel behaviors the urban traffic especially in the morning O-D trips.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Urban Travel Pattern Recognition Based on Clustering Techniques Using License Plate Sensing Data


    Beteiligte:
    Ng, Kean Jiun (Autor:in) / Li, Shuyang (Autor:in) / Pu, Ziyuan (Autor:in)

    Kongress:

    International Conference on Transportation and Development 2022 ; 2022 ; Seattle, Washington



    Erscheinungsdatum :

    31.08.2022




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Clustering Vehicle Temporal and Spatial Travel Behavior Using License Plate Recognition Data

    Huiyu Chen / Chao Yang / Xiangdong Xu | DOAJ | 2017

    Freier Zugriff


    Intelligent travel license plate recognition system

    JIAO MOU | Europäisches Patentamt | 2020

    Freier Zugriff

    Vehicle Travel Path Matching Algorithm Based on License Plate Recognition Data

    Wang, Yu / Wang, Lei / Gu, Xinxin et al. | TIBKAT | 2022