The accurate prediction for the travel time can improve bus operation efficiency. The improvement of bus service level and enhancement of bus trip can relieve the urban traffic problems. To predict bus travel time between adjacent signalized intersections, BP neural network model was used. Factors which influence bus travel time were considered as the input of the network model, and bus travel time was used as the output. Bus route No. 3 in Nanjing was chosen as a case study. The results verify model’s feasibility and indicates that the presented model has certain practical values.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Prediction of Bus Travel Time between Adjacent Signalized Intersections Based on BP Neural Network


    Beteiligte:
    Guo, Yuliang (Autor:in) / Yang, Zhen (Autor:in) / Wang, Hongneng (Autor:in) / Yan, Xue (Autor:in) / Liu, Ran (Autor:in)

    Kongress:

    17th COTA International Conference of Transportation Professionals ; 2017 ; Shanghai, China


    Erschienen in:

    CICTP 2017 ; 1941-1948


    Erscheinungsdatum :

    18.01.2018




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Signalized intersections

    Miller, A.J. | Engineering Index Backfile | 1968



    Minimization of road network travel time by prohibiting left turns at signalized intersections

    Tang, Qinrui / Technische Universität Braunschweig | TIBKAT | 2019

    Freier Zugriff

    Prediction model for bus inter-stop travel time considering the impacts of signalized intersections

    Qi, Weiwei / Wang, Yunhao / Bie, Yiming et al. | Taylor & Francis Verlag | 2021