In order to solve the problem of dividing the traffic pattern of the OD extracted by the mobile phone signaling, using resident survey data and network crawling data as samples, features such as travel attributes and traveler attributes are extracted and equivalently processed to construct model input data equivalent to mobile phone signaling data. Selecting random forest, support vector machine, and neural network machine learning model helps divide the three modes of transportation: car travel, public transportation, and other travel modes. Through multi-index evaluation and case verification, the results show that the random forest model is a better overall model with a prediction accuracy of 70%. The prediction results are stable and reliable and have certain practical application value.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Traffic Pattern Division Based on Mobile Signaling Data


    Beteiligte:
    Yu, Luyi (Autor:in) / Zhu, Xun (Autor:in) / Zhou, Shasha (Autor:in) / Wang, Jingyuan (Autor:in)

    Kongress:

    24th COTA International Conference of Transportation Professionals ; 2024 ; Shenzhen, China


    Erschienen in:

    CICTP 2024 ; 3929-3936


    Erscheinungsdatum :

    11.12.2024




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Traffic travel model construction method based on mobile phone signaling data

    CUI YI / GAO TIAN / CHANG JIANYONG et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    Multimode traffic distribution model construction method based on mobile phone signaling data

    SHEN JIAN / LU ZHENBO / XUE GUANGMING et al. | Europäisches Patentamt | 2020

    Freier Zugriff

    Estimating urban road traffic states using mobile network signaling data

    Derrmann, Thierry / Frank, Raphael / Viti, Francesco et al. | IEEE | 2017


    Comprehensive traffic distribution method based on mobile phone signaling

    YANG WEIDONG / ZHU ZHIBANG / LI DAWEI et al. | Europäisches Patentamt | 2023

    Freier Zugriff