Bus stop passenger flow prediction is a key component in developing urban intelligent transit systems. Bus line networks are usually complex nonlinear time-varying systems, which poses a challenge for constructing the spatio-temporal correlations of passenger flows at bus stops in a region. A multigraph fusion spatio-temporal graph attention network (MF_STGAT) is proposed, which uses the spatio-temporal correlation of each bus stop to achieve regional-level passenger flow prediction. First, MF_STGAT enhances the ability to capture spatio-temporal correlations of bus stops by extracting key frames of bus passenger flow time sequence data and encoding the region into two maps (geographic feature map and functional similarity map). Second, a GAT-based graph fusion method is constructed to obtain the spatial feature of bus stops. The spatial feature information is encoded into vectors, and long short-term memory (LSTM) is used to predict the bus passenger flow at each stop in the region. Finally, the IC card data of 12 main bus lines in Beijing, China, are selected to evaluate the model. The results show that MF_STGAT outperforms baseline models. In addition, we further discuss the extent of the improvement in the accuracy of the model prediction through the spatio-temporal modeling approach and the robustness of MF_STGAT. Moreover, we output the attention weights of the model to enhance the interpretability of the spatio-temporal distribution characteristics of the bus passenger flow.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Predicting Regional-Level Bus Stop Passenger Flow with a Multigraph Fusion Spatio-Temporal Graph Attention Network


    Weitere Titelangaben:

    J. Transp. Eng., Part A: Systems


    Beteiligte:
    Zheng, Yan (Autor:in) / Zheng, Wen (Autor:in) / Yin, Zijuan (Autor:in) / Guo, Rongrong (Autor:in) / Li, Wenquan (Autor:in)


    Erscheinungsdatum :

    01.02.2025




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Spatio-Temporal Graph Attention Convolution Network for Traffic Flow Forecasting

    Liu, Kun / Zhu, Yifan / Wang, Xiao et al. | Transportation Research Record | 2024


    Predicting Pedestrian Crossing Intention With Feature Fusion and Spatio-Temporal Attention

    Yang, Dongfang / Zhang, Haolin / Yurtsever, Ekim et al. | IEEE | 2022


    Traffic Flow Forecasting of Graph Convolutional Network Based on Spatio-Temporal Attention Mechanism

    Zhang, Hong / Chen, Linlong / Cao, Jie et al. | Springer Verlag | 2023


    Spatio-temporal graph attention networks for traffic prediction

    Ma, Chuang / Yan, Li / Xu, Guangxia | Taylor & Francis Verlag | 2024