In railway system, track inspection vehicles regularly measure the vertical and lateral irregularities of each rail in order to ensure the safe running of railway. Derailment coefficient is an important indicator of the vehicle safety when the vertical wheel-rail force and lateral wheel-rail force are integrated together. In this paper, NARX neural network is proposed to predict derailment coefficient by measuring the track irregularities. In order to improve the generalization of the neural networks, the Bayesian Regularization algorithm is employed to train the neural networks. The experiments are carried out and the results show that the NARX neural network with Bayesian Regularization algorithm can predict derailment coefficient accurately.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    The Prediction of Derailment Coefficient Using NARX Neural Network


    Beteiligte:
    Pang, Xue-Miao (Autor:in) / Qin, Yong (Autor:in) / Xing, Zong-Yi (Autor:in) / Jia, Li-Min (Autor:in)

    Kongress:

    First International Conference on Transportation Information and Safety (ICTIS) ; 2011 ; Wuhan, China


    Erschienen in:

    ICTIS 2011 ; 2235-2244


    Erscheinungsdatum :

    16.06.2011




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Prediction of Dst index by using artificial neural network NARX

    Ruhimat, Mamat / Nuraeni, Fitri / Yatini, Clara Y. et al. | American Institute of Physics | 2023


    Prediction of Road Network Traffic State Using the NARX Neural Network

    Ziwen Song / Feng Sun / Rongji Zhang et al. | DOAJ | 2021

    Freier Zugriff



    METHOD, DEVICE, AND PROGRAM FOR ESTIMATING DERAILMENT COEFFICIENT

    IHO HIYORI / SHIMOKAWA YOSHIYUKI / KUBO NAHOMI | Europäisches Patentamt | 2019

    Freier Zugriff