Urban traffic OD prediction has always been a hot research topic in the field of transportation. However, most of the existing OD prediction researches are under normal conditions, without considering the influence of holidays, temperatures, weather, and other factors. This paper proposes an urban traffic OD prediction model based on multi-source data. Firstly, traffic modes are divided based on travel trajectory, speed, acceleration and other factors, and OD data within a certain time granularity are extracted. The OD pairs integrating multiple factors is predicted based on long short-term memory (LSTM) networks. By comparing with the model without using multi-source data, the results show that the LSTM model with multiple factors has higher prediction accuracy and is a better prediction method.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Urban Traffic Dynamic OD Prediction Based on Multi-Source Data


    Beteiligte:
    Ye, Qianqian (Autor:in) / Li, Zhaoliang (Autor:in) / Wu, Junyi (Autor:in) / Cheng, Lijing (Autor:in)

    Kongress:

    22nd COTA International Conference of Transportation Professionals ; 2022 ; Changsha, Hunan Province, China


    Erschienen in:

    CICTP 2022 ; 844-854


    Erscheinungsdatum :

    08.09.2022




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Urban Traffic Dynamic OD Prediction Based on Multi-Source Data

    Ye, Qianaian / Li, Zhaoliang / Wu, Junyi et al. | TIBKAT | 2022


    Urban traffic flow prediction method based on multi-source data fusion

    LIU JIANQI / HE QI / ZENG BI et al. | Europäisches Patentamt | 2020

    Freier Zugriff

    Urban intersection traffic flow prediction method based on multi-source data fusion

    YANG HUICHANG | Europäisches Patentamt | 2021

    Freier Zugriff

    Multi-source data fusion system in urban traffic big data processing

    SHI LITING / WU CHEN | Europäisches Patentamt | 2021

    Freier Zugriff

    URBAN TRAFFIC VELOCITY ESTIMATION METHOD BASED ON MULTI-SOURCE CROWD SENSING DATA

    LI CHAO / ZHANG YINGQIAN / HE SHIBO et al. | Europäisches Patentamt | 2025

    Freier Zugriff