This paper addresses the accurate prediction of charging demand for freight electric vehicles (FEVs) using GPS data, crucial for optimizing charging infrastructure planning. We introduce the Developing Geographic PageRank (DGPR) model to improve prediction accuracy. DGPR utilizes GPS data to process origin-destination (OD) information, considering directional factors and social dimensions like points of interest (POI) and land use. It divides the study area into grid cells, creating a directed graph from OD data, and employs the PageRank algorithm to determine charging demand intensity for each area. The results underscore the DGPR model’s significant impact on precise FEV charging demand prediction. This research facilitates efficient charging infrastructure planning, promoting the sustainable development and effective operation of freight electric vehicle transportation systems.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Freight Electric Vehicle Charging Demand Forecasting Using GPS Data by Developing Geographic PageRank Model


    Beteiligte:
    Zhao, Mengzhuo (Autor:in) / Liu, Dan (Autor:in)

    Kongress:

    24th COTA International Conference of Transportation Professionals ; 2024 ; Shenzhen, China


    Erschienen in:

    CICTP 2024 ; 632-641


    Erscheinungsdatum :

    11.12.2024




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Electric vehicle charging demand forecasting using deep learning model

    Yi, Zhiyan / Liu, Xiaoyue Cathy / Wei, Ran et al. | Taylor & Francis Verlag | 2022


    Urban-range electric vehicle charging demand prediction method considering geographic information

    FANG CHEN / LIU ZEYU / WANG HAOJING et al. | Europäisches Patentamt | 2020

    Freier Zugriff



    Forecasting Short-Term Freight Transportation Demand: Poisson STARMA Model

    Garrido, R. A. / Mahmassani, H. S. / National Research Council; Transportation Research Board | British Library Conference Proceedings | 1998