The acceptance of railway systems as a frontier transportation infrastructure can be attributed to their reliability, safety, and support for green technology. With the recent advances in artificial intelligence and machine learning (AI/ML), the maintenance of railroad transportation systems has taken a different direction, especially in the analysis of railroad big data, leading to real-time processing and detection of railway problems. However, using limited track data may result in overfitting, hindering the accurate implementation of robust models. In this paper, the authors consider generative adversarial networks (GANs) with keen consideration for possible covariate shifts to improve track defect detection and decrease data imbalance. The results show that implementing covariate-shift GAN (COGAN) reduces image processing time and eliminates image biases.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Covariate-Shift Generative Adversarial Network and Railway Track Image Analysis


    Weitere Titelangaben:

    J. Transp. Eng., Part A: Systems


    Beteiligte:


    Erscheinungsdatum :

    01.03.2023




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Image-to-Image Translation Using Generative Adversarial Network

    Lata, Kusam / Dave, Mayank / Nishanth, K N | IEEE | 2019


    Fuzzy evidence track association method based on data cleaning and generative adversarial network

    ZHOU ZHIGUO / CAO YUPENG / ZHOU XUEHUA | Europäisches Patentamt | 2022

    Freier Zugriff

    Generative adversarial network enriched driving simulation

    SONG HAO / PENG JUN / DENG NENGXIU et al. | Europäisches Patentamt | 2022

    Freier Zugriff

    Generative adversarial network enriched driving simulation

    SONG HAO / PENG JUN / DENG NENGXIU et al. | Europäisches Patentamt | 2023

    Freier Zugriff

    GENERATIVE ADVERSARIAL NETWORK ENRICHED DRIVING SIMULATION

    SONG HAO / PENG JUN / DENG NENGXIU et al. | Europäisches Patentamt | 2020

    Freier Zugriff