Bike sharing has been shown to have a significant impact on the sharing rates of other transport modes. To determine the influence of bike sharing on the existing transportation system, this paper focuses on residents’ transport mode choices in Nanjing, China. First, the relevant data about residents’ mode choice is collected from revealed preference (RP) and stated preference (SP) surveys. Second, a multinomial logit (MNL) model is established to analyze the modal split. Third, data analysis and statistical software, SPSS, is used to calibrate the model parameters and test the goodness of fit. Finally, the MNL model is used to predict residents’ transport mode choices. The results show that the model can accurately reflect the residents’ travel choice behaviors, thus, providing important guidance for investment policies and for promoting a sustainable multi-modal transportation system.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Analysis of the Use Rate of Transport Modes Influenced by Bike Sharing


    Beteiligte:
    Cheng, Long (Autor:in) / Huang, Di (Autor:in) / Khadka, Anish (Autor:in) / Niu, Xiaohui (Autor:in) / Liu, Zhiyuan (Autor:in) / Lu, Bin (Autor:in)

    Kongress:

    18th COTA International Conference of Transportation Professionals ; 2018 ; Beijing, China


    Erschienen in:

    CICTP 2018 ; 1034-1044


    Erscheinungsdatum :

    02.07.2018




    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    SHARING BIKE AND SHARING BIKE SYSTEM

    YUE WEI | Europäisches Patentamt | 2019

    Freier Zugriff

    Bike-Sharing-Systeme

    Brinkmann, Jan | Springer Verlag | 2023


    Bike Sharing Systems

    Bracher, Tilman / Aichinger, Wolfgang / Wiechmann, Susanne | FID move | 2012

    Freier Zugriff

    Bike Sharing Systems

    Brinkmann, Jan | Springer Verlag | 2020


    London bike sharing

    Belli, Edoardo | DataCite | 2024