In the ring of quaternionic polynomials there is no easy solution to the problem of finding a suitable definition of multiplicity of a zero. In this paper we discuss different notions of multiple zeros available in the literature and add a computational point of view to this problem, by taking into account the behavior of the well known Newton’s method in the presence of such roots.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Quaternionic polynomials with multiple zeros: A numerical point of view


    Beteiligte:
    Falcão, M. I. (Autor:in) / Miranda, F. (Autor:in) / Severino, R. (Autor:in) / Soares, M. J. (Autor:in) / Sivasundaram, Seenith (Herausgeber:in)

    Kongress:

    ICNPAA 2016 WORLD CONGRESS: 11th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences ; 2016 ; La Rochelle, France


    Erschienen in:

    Erscheinungsdatum :

    27.01.2017


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Self-Inversive Polynomials with All Zeros on the Unit Circle

    Schinzel, A. | British Library Online Contents | 2005


    Sumudu transform based treatment of Krawtchouk polynomials and their integral zeros

    Alenezi, Ahmad M. / Belgacem, Fethi Bin Muhammad | American Institute of Physics | 2014



    Blind deconvolution and phase retrieval using point zeros

    Chen, P.-T. / Fiddy, M. A. / Pommet, D. A. et al. | British Library Conference Proceedings | 1995


    Alternative Set of Nonsingular Quaternionic Orbital Elements

    Roa, Javier / Kasdin, N. Jeremy | AIAA | 2017