In this paper, we review the theory of random fields that are defined on the space domain ℝ3, take values in a real finite-dimensional linear space V that consists of tensors of a fixed rank, and are homogeneous and isotropic with respect to an orthogonal representation of a closed subgroup G of the group O(3). A historical introduction, the statement of the problem, some current results, and a sketch of proofs are included.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Spectral expansions of tensor-valued random fields


    Beteiligte:

    Kongress:

    ICNPAA 2016 WORLD CONGRESS: 11th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences ; 2016 ; La Rochelle, France


    Erschienen in:

    Erscheinungsdatum :

    27.01.2017


    Format / Umfang :

    10 pages





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Adaptive Tensor Filtration of Gaussian Random Fields

    Perov, A. I. | British Library Online Contents | 1996


    q-expansions of vector-valued modular forms of negative weight

    Gimenez, J. / Raji, W. | British Library Online Contents | 2012



    An Affine Invariant Tensor Dissimilarity Measure and Its Applications to Tensor-Valued Image Segmentation

    Wang, Z. / Vemuri, B. / IEEE Computer Society | British Library Conference Proceedings | 2004


    Numerical Analysis of Antenna Fields Using Multipole Expansions

    Klinkenbusch, L. / Adam, J. / European Space Agency | British Library Conference Proceedings | 2006