It is shown that the vector potential created by a charged particle in motion acts as an ideal space flow that surrounds the particle. The interaction between the particle and the entrained space flow gives rise to the observed properties of inertia and the relativistic increase of mass. Parallels are made between the inertia property of matter, electromagnetism and the hydrodynamic drag in potential flow. Accordingly, in this framework the non resistance of a particle in uniform motion through an ideal fluid (Paradox of Dirichlet) corresponds to Newton's first law. The law of inertia suggests that the physical vacuum can be modeled as an ideal fluid. It is shown that the force exerted on a particle by an ideal fluid produces two effects: i) resistance to acceleration and, ii) an increase of mass with velocity which is due to the fluid dragged by the particle, where the bare mass of the particle at rest changes when in motion (“dressed” particle). From this theoretical ground, the inertia property of matter appears in a new light representing a promising avenue to create new propulsion concepts.
Inertia, Electromagnetism and Fluid Dynamics
SPACE TECHNOLOGY AND APPLICATIONS INTERNATIONAL FORUM‐STAIF 2008: 12th Conference on Thermophysics Applications in Microgravity; 1st Symposium on Space Resource Utilization; 25th Symposium on Space Nuclear Power and Propulsion; 6th Conference on Human/Robotic Technology and the Vision for Space Exploration; 6th Symposium on Space Colonization; 5th Symposium on New Frontiers and Future Concept ; 2008 ; Albuquerque (New Mexico)
AIP Conference Proceedings ; 969 , 1 ; 1154-1162
21.01.2008
9 pages
Aufsatz (Konferenz)
Elektronische Ressource
Englisch
Tema Archiv | 1995
|Kraftfahrwesen | 1991
|Electromagnetism in Chiral Media
British Library Conference Proceedings | 1993
|Electromagnetism in moving, conducting media
TIBKAT | 1968
|