Results from previous space reactor and radioisotope power source risk assessments were combined to provide a scoping assessment of the possible risks from the launch of a reactor power system for use on the surface of the moon or Mars. It is assumed that future reactor power system launches would be subject to the same rigorous safety analysis and launch approval process as past nuclear payload launches. Using the same methodology that has gained approval of past launches, it was determined that the mission risk would be 0.029 person‐rem worldwide which translates to 1.5 * 10 −5 latent health effects. It is seen that the only significant sources of radiological risks from a non‐operating reactor are possible inadvertent criticality accidents and the consequences of such events have been shown to be extremely low. Passive means such as spectral shift poisons or high reactor core length/diameter ratios have been shown to be able to reduce or eliminate the possibility of the more credible criticality accidents, such as flooding or sand burial. This paper advances the premise that, for design purposes, future space reactor surface‐power designs should primarily address the credible accidents and not the hypothetical accidents. For launch accidents and other safety assessments, a probabilistic risk assessment approach will have to be used to assess the safety impact of all types of accidents, including the hypothetical accidents. With this approach, the design of the system will not be burdened with design features that are based on hypothetical criticality accidents having negligible risk. Moreover, there is little chance of convincingly demonstrating that these design features can substantially reduce or eliminated the risk associated with hypothetical criticality accidents.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Space Reactor Launch Safety—An Acceptably Low Risk


    Beteiligte:
    Weitzberg, Abraham (Autor:in) / Wright, Steven (Autor:in) / El‐Genk, Mohamed S. (Herausgeber:in)

    Kongress:

    SPACE TECHNOLOGY AND APPLICATIONS INTERNATIONAL FORUM‐STAIF 2008: 12th Conference on Thermophysics Applications in Microgravity; 1st Symposium on Space Resource Utilization; 25th Symposium on Space Nuclear Power and Propulsion; 6th Conference on Human/Robotic Technology and the Vision for Space Exploration; 6th Symposium on Space Colonization; 5th Symposium on New Frontiers and Future Concept ; 2008 ; Albuquerque (New Mexico)


    Erschienen in:

    AIP Conference Proceedings ; 969 , 1 ; 446-451


    Erscheinungsdatum :

    21.01.2008


    Format / Umfang :

    6 pages





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Are vehicle weight reduction and acceptably low internal noise incompatible?

    Lalor, N. / Associazione Tecnica dell'Automobile | British Library Conference Proceedings | 1995


    Are vehicle weight reduction and acceptably low internal noise incompatible?

    Lalor,N. / Univ.of Southampton,GB | Kraftfahrwesen | 1995




    Space launch system safety estimation models

    Mashchenko, Alexandr | Online Contents | 2009