The existence and multiplicity of positive solutions for quasilinear elliptic equations with nonhomogeneous principal part are discussed. The lower terms considered here have the Sobolev critical growth and have indefinite coefficients. We show that the strong comparison theorem holds for these equations. By this fact and regularity theorem, "C1 versus Sobolev space local minimizers" argument may be applied, which yields a local minimizer of the functional attached to the equation defined on the Sobolev space. Finally applying the minimax theorem and the concentration-compactness argument, we show the multiple existence of positive solutions.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Multiple existence of positive solutions to quasilinear elliptic equations involving indefinite lower terms


    Beteiligte:
    Narukawa, Kimiaki (Autor:in) / Sivasundaram, Seenith (Herausgeber:in)

    Kongress:

    9TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES: ICNPAA 2012 ; 2012 ; Vienna, Austria


    Erschienen in:

    AIP Conference Proceedings ; 1493 , 1 ; 691-698


    Erscheinungsdatum :

    06.11.2012


    Format / Umfang :

    8 pages





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    A new iterative algorithm to solve periodic Riccati differential equations with sign indefinite quadratic terms

    Feng, Yantao / Varga, Andreas / Anderson, Brian D.O. et al. | Deutsches Zentrum für Luft- und Raumfahrt (DLR) | 2011

    Freier Zugriff