This study aims to describe the most commonly used swarm intelligence algorithms: particle swarm optimization method, ant colony optimization algorithm and bee colony optimization algorithm. The principal features of swarm intelligence algorithms that allow their usage for robotic technology systems design were considered. The algorithms operating principles were described and illustrated by block diagrams. In addition, the main pros and cons of each algorithm were reported. A comparative analysis of the algorithms with the description of their main advantages and application fields was done.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Comparative analysis of swarm intelligence algorithms for multi-agent systems coordination


    Beteiligte:
    Serebrenniy, V. V. (Autor:in) / Svertilov, N. V. (Autor:in) / Mikrin, Evgeny A. (Herausgeber:in) / Rogozin, Dmitry O. (Herausgeber:in) / Aleksandrov, Anatoly A. (Herausgeber:in) / Sadovnichy, Victor A. (Herausgeber:in) / Fedorov, Igor B. (Herausgeber:in) / Mayorova, Vera I. (Herausgeber:in)

    Kongress:

    XLIII ACADEMIC SPACE CONFERENCE: dedicated to the memory of academician S.P. Korolev and other outstanding Russian scientists – Pioneers of space exploration ; 2019 ; Moscow, Russia


    Erschienen in:

    Erscheinungsdatum :

    15.11.2019


    Format / Umfang :

    6 pages





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Transport modeling by multi-agent systems: a swarm intelligence approach

    Teodorovic´, Dusˇan | Taylor & Francis Verlag | 2003



    Swarm Intelligence Algorithms and its Types

    Ramya S. I., Anto / N., Mageswari | BASE | 2017

    Freier Zugriff

    Survey of swarm intelligence optimization algorithms

    Yang, Feng / Wang, Pengxiang / Zhang, Yizhai et al. | IEEE | 2017