Logarithmic HDMR is an HDMR based method and it allows us to reconstruct an analytical structure for a given multivariate analytical function in terms of less variate components. In this study, we develop a method to model multivariate data through Logarithmic HDMR and we use this method to make an approximation to the given original image. That is, we deal with the reconstruction of an image by using Logarithmic HDMR philosophy and we reach very promising results.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Logarithmic high dimensional model representation in image processing


    Beteiligte:
    Tunga, Burcu (Autor:in) / Sivasundaram, Seenith (Herausgeber:in)

    Kongress:

    10TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES: ICNPAA 2014 ; 2014 ; Narvik, Norway


    Erschienen in:

    AIP Conference Proceedings ; 1637 , 1 ; 1120-1126


    Erscheinungsdatum :

    10.12.2014


    Format / Umfang :

    7 pages





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Differentiation-Based Edge Detection Using the Logarithmic Image Processing Model

    Deng, G. / Pinoli, J.-C. | British Library Online Contents | 1998



    High dimensional model representation (HDMR) with clustering for image retrieval

    Karcılı, Ayşegül / Tunga, Burcu | American Institute of Physics | 2017


    A Logarithmic Image Prior for Blind Deconvolution

    Perrone, D. / Favaro, P. | British Library Online Contents | 2016


    High Dimensional Model Representation With Principal Component Analysis

    Hajikolaei, Kambiz Haji | Online Contents | 2014