A rocket propulsion system, whether it is a chemical rocket or a nuclear thermal rocket, is fairly complex in detail but rather simple in principle. Among all the interacting parts, three components stand out: they are pumps & turbines (turbopumps), and the thrust chamber. To obtain an understanding of the overall rocket propulsion system characteristics, one starts from analyzing the interactions among these three components. It is therefore of utmost importance to be able to satisfactorily characterize the turbopump, level by level, at all phases of a vehicle design cycle. Here at the NASA Glenn Research Center, as the starting phase of a rocket engine design, specifically a Nuclear Thermal Rocket Engine design, we adopted the approach of using a high level system cycle analysis code (NESS) to obtain an initial analysis of the operational characteristics of a turbopump required in the propulsion system. A set of turbopump design codes (PumpDes and TurbDes) were then executed to obtain sizing and performance parameters of the turbopump that were consistent with the mission requirements. A set of turbopump analyses codes (PUMPA and TURBA) were applied to obtain the full performance map for each of the turbopump components; a two dimensional layout of the turbopump based on these mean line analyses was also generated. Adequacy of the turbopump conceptual design will later be determined by further analyses and evaluation. In this paper, descriptions and discussions of the aforementioned approach are provided and future outlooks are discussed.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Turbopump Design and Analysis Approach for Nuclear Thermal Rockets


    Beteiligte:
    Chen, Shu‐cheng S. (Autor:in) / Veres, Joseph P. (Autor:in) / Fittje, James E. (Autor:in) / El-Genk, Mohamed S. (Herausgeber:in)

    Kongress:

    SPACE TECH.& APPLIC.INT.FORUM-STAIF 2006: 10th Conf Thermophys Applic Microgravity; 23rd Symp Space Nucl Pwr & Propulsion; 4th Conf Human/Robotic Tech & Nat'l Vision for Space Explor.; 4th Symp Space Coloniz.; 3rd Symp on New Frontiers & Future Concepts ; 2006 ; Albuquerque, New Mexico (USA)


    Erschienen in:

    AIP Conference Proceedings ; 813 , 1 ; 522-530


    Erscheinungsdatum :

    20.01.2006


    Format / Umfang :

    9 pages





    Medientyp :

    Aufsatz (Konferenz)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch



    Turbopump Design and Analysis Approach for Nuclear Thermal Rockets

    Chen, S. S. / Veres, J. P. / Fittje, J. E. et al. | British Library Conference Proceedings | 2006


    Turbopump Design and Analysis Approach for Nuclear Thermal Rockets

    Chen, Shu-cheng S. / Veres, Joseph P. / Fittje, James E. | NTRS | 2006


    Turbopump options for nuclear thermal rockets

    BISSELL, W. / GUNN, S. | AIAA | 1992