In the aerodynamic characteristics of supersonic parachutes, it is important to understand surface pressure distribution because it is strongly related to the fluctuation of drag and problematic unstable deformation of a parachute. However, there is a paucity of studies that focuses on the detailed surface pressure distribution. Therefore, we investigated the interior and exterior of a rigid disk-gap-band-type parachute as the first step, under the assumption that the forebody or suspension lines are absent, and thus the pressure and drag fluctuations are small. Two configurations are considered: one with a continuous gap and a vent orifice, representing a conventional Disk-Gap-Band parachute, and one with a discontinuous gap made up of 8 separate orifices and a vent orifice. By making the gap discontinuous, the interior and exterior pressure fluctuations are reduced. Furthermore, as indicated by the flowfield analysis, the discrete gap reduces the asymmetric pressure distribution interior the parachute, and the interior pressure fluctuation far from the center is suppressed. The result is considered useful for the suppression of unstable deformation such as area oscillation. This is currently a problem in supersonic parachute operation. In addition, we have identified locations on the model surface where the pressure fluctuations contribute to the drag fluctuations of the model.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Numerical Study of Surface Pressure Fluctuation on Rigid Disk-Gap-Band-Type Supersonic Parachutes


    Beteiligte:
    Kitamura, K. (Autor:in) / Fukumoto, K. (Autor:in) / Mori, K. (Autor:in)

    Erschienen in:

    AIAA Journal ; 58 , 12 ; 5347-5360


    Erscheinungsdatum :

    2020-11-11


    Format / Umfang :

    14 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    NUMERICAL SIMULATION ON SUPERSONIC AERODYNAMIC INTERFERENCE FOR RIGID AND FLEXIBLE PARACHUTES

    Xue, X. / Koyama, H. / Nakamura, Y. et al. | British Library Conference Proceedings | 2012


    Numerical Simulation on Supersonic Aerodynamic Interference for Rigid and Flexible Parachutes

    Xue, XIaopeng / Koyama, Hiroto / Nakamura, Yoshiaki | AIAA | 2012


    Aerodynamics of Supersonic Parachutes

    C. W. Peterson | NTIS | 1987



    Modeling and Flight Performance of Supersonic Disk-Gap-Band Parachutes in Slender Body Wakes

    Muppidi, Suman / O'Farrell, Clara / Tanner, Christopher et al. | NTRS | 2018