An innovative machine-learning-based probabilistic framework for online rotor fault diagnosis in multicopters is presented. The proposed scheme employs in-flight out-of-plane strain measurements at each of the multicopter booms to detect, identify, and quantify rotor faults while distinguishing them from the aircraft response to random gusts. Its robust performance is demonstrated with application to a 2-foot-diam hexacopter flying under varying forward velocity and gross weight configurations, as well as atmospheric disturbances and uncertainty. The rotor fault diagnosis takes place in two steps. First, a simple perceptron classifies the aircraft’s health condition. If a rotor fault is detected it is simultaneously identified and the fault magnitude estimation step initiates. Here, linear regression models are used to predict the respective rotor degradation values with their 95% confidence intervals. The generalization capability of the method is established with several test data under unmodeled operating conditions (not used in the training phase). The proposed framework can accurately diagnose even minor rotor faults of 8% degradation while distinguishing them from aggressive gusts of up to 10    m / s magnitude. The maximum fault detection time is less than 0.3 s. The health state classification and the rotor fault magnitude quantification accuracy are over 99%.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Machine-Learning Based Rotor Fault Diagnosis in a Multicopter with Strain Data


    Beteiligte:
    Dutta, Airin (Autor:in) / Niemiec, Robert (Autor:in) / Kopsaftopoulos, Fotis (Autor:in) / Gandhi, Farhan (Autor:in)

    Erschienen in:

    AIAA Journal ; 61 , 9 ; 4182-4194


    Erscheinungsdatum :

    01.09.2023




    Medientyp :

    Aufsatz (Konferenz) , Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    MULTICOPTER ONLINE ROTOR FAULT DIAGNOSIS SYSTEM

    KOPSAFTOPOULOS FOTIOS / DUTTA AIRIN / GANDHI FARHAN | Europäisches Patentamt | 2025

    Freier Zugriff

    MULTICOPTER ONLINE ROTOR FAULT DIAGNOSIS SYSTEM

    KOPSAFTOPOULOS FOTIOS / DUTTA AIRIN / GANDHI FARHAN | Europäisches Patentamt | 2023

    Freier Zugriff



    ROTOR AND MULTICOPTER

    MATSUDA YASUTOSHI | Europäisches Patentamt | 2017

    Freier Zugriff