The most complete description of the state of a system at any time is given by knowledge of the probability density function, which describes the locus of possible states conditioned on any available measurement information. When employing optical data, the concept of the admissible region provides a physics-based region of the range/range-rate space that produces Earth-bound orbit solutions. This work develops a method that employs a probabilistic interpretation of the admissible region and approximates the admissible region by a Gaussian mixture to formulate an initial orbit determination solution. The Gaussian mixture representation of the probability density function is then forecast and updated with subsequent data to iteratively refine the region of uncertainty. Simulation results are presented using synthetic data over a range of orbits, in which it is shown that the new method is consistently able to initialize a probabilistic orbit solution and provide iterative refinement via follow-on tracking.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Probabilistic Initial Orbit Determination Using Gaussian Mixture Models


    Beteiligte:
    DeMars, Kyle J. (Autor:in) / Jah, Moriba K. (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.09.2013




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Initial Relative Orbit Determination using Stereoscopic Imaging and Gaussian Mixture Models

    LeGrand, K. / Utah State University; American Institute of Aeronautics and Astronautics | British Library Conference Proceedings | 2013


    Initial Relative Orbit Determination Using Multiple Los Measurements and Gaussian Mixture Models (AAS 14-292)

    LeGrand, K.A. / DeMars, K.J. / Pernicka, H.J. et al. | British Library Conference Proceedings | 2014



    Gaussian Mixture Approximation of Angles-Only Initial Orbit Determination Likelihood Function

    Psiaki, Mark L. / Weisman, Ryan M. / Jah, Moriba K. | AIAA | 2017