This paper proposes a planning framework for a multitarget unmanned aerial vehicle (UAV) reconnaissance mission under target position uncertainty based on the imitation learning of a policy network. A problem in planning the flight path and task sequence for the reconnaissance of given targets is formulated as a Markov decision process (MDP). A deep neural classifier is introduced as a policy network to predict the probability over admissible immediate actions at each mission state. A set of MDPs with specified target locations (training set) are constructed and solved offline to generate the segments of underlying optimal policy, which are used to train the policy network. The trained policy networks are used for online (runtime) planning of the UAV conducting reconnaissance for arbitrary target locations by providing the near-optimal action corresponding to specified target locations and the current state. A numerical case study has been conducted to demonstrate the effectiveness of the proposed approach from the perspective of its classification performance and the expected return in comparison with a baseline online planning algorithm.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Imitation Learning-Based Unmanned Aerial Vehicle Planning for Multitarget Reconnaissance Under Uncertainty


    Beteiligte:
    Choi, Uihwan (Autor:in) / Ahn, Jaemyung (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.01.2020




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Unmanned aerial vehicle reconnaissance vehicle

    XU ZHEWEI / QU JINSHENG / SHANGGUAN ZHE et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    Joint Formation System of Reconnaissance Unmanned Aerial Vehicle and Unmanned Aerial Vehicle

    TIAN DAXIN / DUAN XUTING / HUANG MIQI et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    Reconnaissance and attack integrated unmanned aerial vehicle

    PEI ZHONGJUN / XIONG XIN / XIONG YIFA et al. | Europäisches Patentamt | 2021

    Freier Zugriff

    Detachable reconnaissance and attack unmanned aerial vehicle

    WAN MINGQUAN / ZHANG ZHIQI / LIU TIANYU et al. | Europäisches Patentamt | 2024

    Freier Zugriff

    Fire scene all-terrain reconnaissance unmanned aerial vehicle

    YU JIANQIAO / WANG CHUNHUI / ZHOU HONGMIAO et al. | Europäisches Patentamt | 2023

    Freier Zugriff