Swirl-recovery vanes (SRVs) enhance propulsive efficiency by converting the rotational kinetic energy in a propeller slipstream into additional thrust. This paper discusses the aerodynamic and aeroacoustic impact of the installation of a set of SRVs downstream of a single-rotating propeller. Experiments were carried out in a large low-speed wind tunnel, whereas simulations were performed by solving the Reynolds-averaged Navier–Stokes equations. Favorable comparisons between the experimental and numerical slipstream data validated the simulations, which predicted a maximum propulsive-efficiency increase of 0.7% with the current design of the SRVs. This can be improved further by optimizing the pitch distribution of the SRVs. The upstream effect of the SRVs on the time-averaged propeller performance was negligible. Yet, small but systematic unsteady propeller loads were measured with a peak-to-peak amplitude of at most 2% of the time-averaged loading, occurring at a frequency corresponding to the five SRV passages during one revolution. The downstream interaction was one order of magnitude stronger, with unsteady loading on the SRVs with a peak-to-peak amplitude of about 20% of the time-averaged load. The interaction mechanisms caused an increase of the tonal noise levels of 3–7 dB, with the noise penalty decreasing with increasing propeller thrust setting.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Aerodynamic and Aeroacoustic Performance of a Propeller Propulsion System with Swirl-Recovery Vanes


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    2018-08-27


    Format / Umfang :

    15 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    AERODYNAMIC AND AEROACOUSTIC INVESTIGATION OF SWIRL RECOVERY VANES FOR PROPELLER PROPULSION SYSTEMS

    Van Den Ende, L. E. / Li, Q. / Avallone, F. et al. | British Library Conference Proceedings | 2018


    Aerodynamic and Aeroacoustic Effects of Swirl Recovery Vanes Length

    Avallone, F. / van den Ende, L. / Li, Q. et al. | AIAA | 2019


    Towards Optimum Swirl Recovery Vanes for Propeller Propulsion Systems

    Li, Qingxi / Öztürk, Kenan / Sinnige, Tomas et al. | AIAA | 2017


    Design and Experimental Validation of Swirl-Recovery Vanes for Propeller Propulsion Systems

    Li, Qingxi / Öztürk, Kenan / Sinnige, Tomas et al. | AIAA | 2018