Estimating the functional relation between the probabilistic response of a computational model and the distribution parameters of the model inputs is especially useful for 1) assessing the contribution of the distribution parameters of model inputs to the uncertainty of model output (parametric global sensitivity analysis), and 2) identifying the optimized distribution parameters of model inputs to efficiently and cheaply reduce the uncertainty of model output (parametric optimization). In this paper, the extended Monte Carlo simulation method is developed for this purpose, which provides four benefits to the parametric global sensitivity analysis and parametric optimization problems. First, the extended Monte Carlo simulation method is able to provide an unbiased or progressive unbiased estimate for the model whose behavior is even mainly governed by high nonlinearity or interaction terms. Second, only one set of model input–output samples is needed for implementing the method; thus, the computational burden is free of input dimensionality. Third, the extended Monte Carlo simulation is a derivative-free method. Fourth, the extended Monte Carlo simulation method enables us to solve problems with dependent and non-normally distributed model inputs. Additionally, the R-indices are introduced for conquering the overparameterized problem in the optimization process. An analytical example and two engineering examples are used to demonstrate the power of the proposed methods.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Extended Monte Carlo Simulation for Parametric Global Sensitivity Analysis and Optimization


    Beteiligte:
    Wei, Pengfei (Autor:in) / Lu, Zhenzhou (Autor:in) / Song, Jingwen (Autor:in)

    Erschienen in:

    AIAA Journal ; 52 , 4 ; 867-878


    Erscheinungsdatum :

    01.04.2014




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Sensitivity Analysis of Markov Chain Monte Carlo

    Millwater, Harry / Vazquez, Eric / Wu, Justin et al. | AIAA | 2010


    Sensitivity Analysis of Direct Simulation Monte Carlo Parameters for Ionizing Hypersonic Flows

    Higdon, Kyle J. / Goldstein, David B. / Varghese, Philip L. | AIAA | 2018


    Trajectory Prediction Sensitivity Analysis Using Monte Carlo Simulations

    Rudnyk, Julia / Ellerbroek, Joost / Hoekstra, Jacco | AIAA | 2018


    Sensitivity study of staircase fatigue tests using Monte Carlo simulation

    Song,J. / Mourelatos,Z.P. / Gu,R.J. et al. | Kraftfahrwesen | 2005