A computational model has been developed to analyze composite pi joints subjected to pulloff and side-bend loading. A discrete damage modeling approach is used to capture the interactions between intralaminar damage (matrix cracking) and interlaminar damage (delamination). Cohesive element interlayers and matrix-crack elements are governed by the same mixed-mode traction–separation formulation, resulting in a unified damage framework. The finite element model was calibrated using experimental data from pristine and defective joints. In the calibration process, in situ cohesive material properties were backcalculated from pulloff tests such that the accurate prediction of structural response and the damage evolution of pi joints were possible. Computational predictions for both pulloff and side-bend loading are shown to agree well with experimental results for joints subjected to pulloff and side-bend loading.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Experimentally Validated Progressive Failure Modeling of Composite Pi Joints


    Beteiligte:

    Erschienen in:

    AIAA Journal ; 61 , 10 ; 4652-4663


    Erscheinungsdatum :

    01.10.2023




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Experimentally Validated Progressive Failure Modeling of Composite Pi Joints

    Finlay, James / Waas, Anthony M. / Davidson, Paul et al. | AIAA | 2022


    Experimentally Validated Progressive Failure Modeling of Composite Pi Joints

    Finlay, James / Waas, Anthony M. / Davidson, Paul et al. | TIBKAT | 2022


    Progressive Failure Modeling of Z-Pin Reinforced Composite Pi Joints

    Finlay, James / Waas, Anthony M. / Davidson, Paul et al. | TIBKAT | 2023


    Progressive Failure Modeling of Z-Pin Reinforced Composite Pi Joints

    Finlay, James / Waas, Anthony M. / Davidson, Paul et al. | AIAA | 2023