This study proposes a data-driven fault diagnosis for multicopter unmanned aerial vehicles that uses the principal direction vector of inertial measurement unit (IMU) sensor signals calculated by principal component analysis. The main idea comes from the fact that a normal sphere-shaped distribution of the sensor data changes to a specific elliptical shape under a certain thrust fault situation. The fault diagnosis is based on classification and regression using supervised learning with the gyroscope and accelerometer datasets of an IMU. We analyze the performance of the proposed approach by depending on different learning algorithms. To verify the diagnostic performance, ground experiments with a hexacopter on the gimbaled jig are performed for various cases of damaged propellers. Then, the applicability of the proposed data-driven fault diagnosis is confirmed by analyzing the accuracy of the fault’s location and degree.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Data-Driven Diagnosis of Multicopter Thrust Fault Using Supervised Learning with Inertial Sensors


    Beteiligte:
    Kim, Taegyun (Autor:in) / Kim, Seungkeun (Autor:in) / Shin, Hyo-Sang (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.11.2023




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    PREFLIGHT DIAGNOSIS OF MULTICOPTER ACTUATOR FAULT USING SUPERVISED LEARNING WITH DISTURBANCE OBSERVER OUTPUTS

    Kim, T. / Kim, Y. / Kim, S. | British Library Conference Proceedings | 2022


    Method for Diagnosis of Multicopter Thrust Abnormalities

    KIM JUNG HOON / LEE JU HEE | Europäisches Patentamt | 2021

    Freier Zugriff

    MULTICOPTER ONLINE ROTOR FAULT DIAGNOSIS SYSTEM

    KOPSAFTOPOULOS FOTIOS / DUTTA AIRIN / GANDHI FARHAN | Europäisches Patentamt | 2025

    Freier Zugriff

    MULTICOPTER ONLINE ROTOR FAULT DIAGNOSIS SYSTEM

    KOPSAFTOPOULOS FOTIOS / DUTTA AIRIN / GANDHI FARHAN | Europäisches Patentamt | 2023

    Freier Zugriff