Simulations of gas seeding into a hypersonic boundary-layer flow were performed using OpenFOAM® to investigate and quantify errors associated with quantitative planar laser-induced fluorescence thermometry and velocimetry techniques. A modified version of the compressible rhoCentralFoam solver was used to simulate multicomponent chemically reactive flows. Simulations replicated conditions used in NASA Langley Research Center’s 31 in. Mach 10 facility with a wedge model oriented at various angles of attack with respect to the freestream flow in the test section. Adverse chemistry effects from the reaction of nitric oxide with molecular oxygen were investigated at various facility running conditions. Specifically, the effect of heat release on velocity and temperature profiles that would be obtained using the nonintrusive laser measurement techniques was assessed. The effect of any potential adverse chemistry reactions was found to be negligible.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Nitric Oxide Chemistry Effects in Hypersonic Boundary Layers


    Beteiligte:
    Arisman, C. J. (Autor:in) / Johansen, C. T. (Autor:in)

    Erschienen in:

    AIAA Journal ; 53 , 12 ; 3652-3660


    Erscheinungsdatum :

    2015-08-13


    Format / Umfang :

    9 pages




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Nitric Oxide Chemistry Effects in Hypersonic Boundary Layers

    Arisman, Chris / Johansen, Craig T. / Galuppo, Wagner et al. | AIAA | 2013


    Nitric Oxide Chemistry Effects in Hypersonic Boundary Layers

    Arisman, C. / Johansen, C.T. / Galuppo, W. et al. | British Library Conference Proceedings | 2013



    Hypersonic Transitional Boundary Layers

    F.K. OWEN AND C.C. HORSTMAN | AIAA | 1972