An experimental test campaign was conducted for a rotating detonation rocket engine (RDRE) using gaseous oxygen and RP-2 at operating pressures of 3–18 atm. The copper chamber outer wall was instrumented with embedded thermocouples to provide insight into heat-flux levels for various locations in the chamber at numerous operating conditions and wave topologies. Results were compared to throat-level heat fluxes assuming conventional constant-pressure combustion using existing correlations found by Bartz. These comparisons show that average heat loads in the RDRE are near the estimated constant-pressure throat-level heat fluxes assuming frozen flow chemistry, but substantially lower than predictions with equilibrium chemistry. Heat fluxes in the detonation wave region appeared to be relatively higher than in the product region downstream of the detonation waves. Generally, the measured heat fluxes fell within a range manageable with conventional cooling methods.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Experimental Investigation of Wall Heat Flux in a Rotating Detonation Rocket Engine


    Beteiligte:
    Lim, Dasheng (Autor:in) / Heister, Stephen D. (Autor:in) / Humble, Jenna (Autor:in) / Harroun, Alexis J. (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.09.2021




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Calorimeter Heat Flux Trends in NASA’s Subscale Rotating Detonation Rocket Engine

    Hernandez-McCloskey, Joseph / Teasley, Thomas W. / Petty, Dillon M. et al. | AIAA | 2025


    Rotating Detonation Rocket Engine (RDRE)

    H. D. Perkins | NTIS | 2023


    Computational Study of Chamber Wall Thermal Effects and Heat Flux in a Rotating Detonation Rocket Engine

    Batista, Armani / Kickliter, Trevor / Ross, Mathias et al. | AIAA | 2024



    Rotating Detonation Rocket Engine (RDRE)

    H. D. Perkins | NTIS | 2020