The inclusion of transition-to-turbulence effects in computational fluid dynamics simulations is essential to accurately predict drag reduction from the use of laminar flow technologies. The parabolized stability equation (PSE) method takes into account nonlocal and nonparallel effects on boundary-layer dynamics. Its computational cost compares to that of linear stability theory (LST) analysis, which does not account for these effects. However, difficulties related to the robustness of PSE have prevented its application to industrial cases, where the more straightforward LST approach has been adopted because of its relative ease of use. When using PSE with an e N transition method, it is necessary to determine the stability modes that trigger transition and their neutral points (NPs). A robust PSE-based transition framework is proposed that includes a boundary-layer solver, a database method, and an LST solver that provides the required stability modes and the corresponding NPs so that a robust PSE calculation is automatically performed. The current approach leverages an automatic framework for the application of PSE-based transition prediction to aerodynamic flow analysis.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Toward Automatic Parabolized Stability Equation-Based Transition-to-Turbulence Prediction for Aerodynamic Flows



    Erschienen in:

    AIAA Journal ; 59 , 2 ; 462-473


    Erscheinungsdatum :

    01.02.2021




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch




    Toward a Local Explicit Parabolized Stability Solver for High-Speed Flows

    King, Christian B. / Miller, Steven A. | AIAA | 2025



    Adjoint parabolized stability equations for receptivity prediction

    Dobrinsky, Alexander / Collis, S. | AIAA | 2000



    Parabolized stability equation models in turbulent supersonic jets

    Rodriguez, Daniel / Sinha, Aniruddha / Brès, Guillaume et al. | AIAA | 2012