We propose a multifidelity formulation for generating cokriging surrogates of complex physics models. First, we show that the standard autoregressive recursive approach may be subject to substantial limitations due to possible modeler’s biases/errors. These are inherent to the process of establishing a nested hierarchy concerning the alleged fidelity of the available models. The formulation we propose mitigates this issue. At each hierarchy level, the predictor consists of a linear combination of all previous levels instead of just the underlying one. The methodology implies a slightly higher training cost for the surrogate. However, the higher training cost is acceptable, considering the effort typically required to generate data in aerospace applications. A few artificial tests, including the optimization of a two-dimensional airfoil, illustrate strengths and weaknesses of the approach.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Debiased Multifidelity Approach to Surrogate Modeling in Aerospace Applications


    Beteiligte:

    Erschienen in:

    Erscheinungsdatum :

    01.07.2025




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch






    Multifidelity Surrogate Based on Single Linear Regression

    Zhang, Yiming / Kim, Nam H. / Park, Chanyoung et al. | AIAA | 2018


    Multifidelity Surrogate Modeling of Experimental and Computational Aerodynamic Data Sets

    Kuya, Yuichi / Takeda, Kenji / Zhang, Xin et al. | AIAA | 2011


    Construction of Dynamic Multifidelity Locally Optimized Surrogate Models

    Rumpfkeil, Markus P. / Beran, Philip | AIAA | 2017