This paper presents a new approach for optimization under uncertainty in the presence of probabilistic, interval, and mixed uncertainties, avoiding the need to specify probability distributions on uncertain parameters when such information is not readily available. Existing approaches for optimization under these types of uncertainty mostly rely on treating combinations of statistical moments as separate objectives, but this can give rise to stochastically dominated designs. Here, horsetail matching is extended for use with these types of uncertainties to overcome some of the limitations of existing approaches. The formulation delivers a single, differentiable metric as the objective function for optimization. It is demonstrated on algebraic test problems, the design of a wing using a low-fidelity coupled aerostructural code, and the aerodynamic shape optimization of a wing using computational fluid dynamics analysis.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Extending Horsetail Matching for Optimization Under Probabilistic, Interval, and Mixed Uncertainties


    Beteiligte:

    Erschienen in:

    AIAA Journal ; 56 , 2 ; 849-861


    Erscheinungsdatum :

    01.02.2018




    Medientyp :

    Aufsatz (Konferenz) , Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch