A group of satellites, with either homogeneous or heterogeneous orbital characteristics and/or hardware specifications, can undertake a reconfiguration process due to variations in operations pertaining to Earth observation missions. This paper investigates the problem of optimizing a satellite constellation reconfiguration process against two competing mission objectives: 1) the maximization of the total coverage reward, and 2) the minimization of the total cost of the transfer. The decision variables for the reconfiguration process include the design of the new configuration and the assignment of satellites from one configuration to another. We present a novel biobjective integer linear programming formulation that combines constellation design and transfer problems. The formulation lends itself to the use of generic mixed-integer linear programming (MILP) methods such as the branch-and-bound algorithm for the computation of provably optimal solutions; however, these approaches become computationally prohibitive even for moderately sized instances. In response to this challenge, this paper proposes a Lagrangian relaxation-based heuristic method that leverages the assignment problem structure embedded in the problem. The results from the computational experiments attest to the near-optimality of the Lagrangian heuristic solutions and a significant improvement in the computational runtime as compared to a commercial MILP solver.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Regional Constellation Reconfiguration Problem: Integer Linear Programming Formulation and Lagrangian Heuristic Method


    Beteiligte:
    Lee, Hang Woon (Autor:in) / Ho, Koki (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.11.2023




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Deterministic Multistage Constellation Reconfiguration Using Integer Programming and Sequential Decision-Making Methods

    Lee, Hang Woon / Williams Rogers, David O. / Pearl, Brycen D. et al. | AIAA | 2025


    Cislunar Satellite Constellation Design via Integer Linear Programming

    Patel, Malav / Shimane, Yuri / Lee, Hang Woon et al. | Springer Verlag | 2024


    Cislunar Satellite Constellation Design via Integer Linear Programming

    Patel, Malav / Shimane, Yuri / Lee, Hang Woon et al. | Springer Verlag | 2024