Lambert’s problem involves solving the orbits connecting two position vectors with a given flight time. When introducing variations to the input of this problem (that is, terminal positions and the flight time), the output terminal velocities vary in response. The higher-order Lambert problem pursues a higher-order Taylor approximation of the output with respect to the input. Instead of finding a real number root, Householder methods are adapted to find a Taylor series solution of the transfer-time equation. By using explicit derivatives of the transfer-time equation, the newly implemented Householder methods converge faster than the general partial inversion method. In applications such as pork-chop plots and orbital admittance maps that require solving a large number of Lambert’s problems, a higher-order Lambert solution can reduce the running time by more than 80% when compared to solving the original Lambert problems one by one. Furthermore, the investigation of the parameter space of Lambert’s problem yields useful insights to the selection of higher-order expansion points.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Higher-Order Lambert Problem Solution Based on Differential Algebra


    Beteiligte:
    Shu, Peng (Autor:in) / Yang, Zhen (Autor:in) / Luo, Ya-Zhong (Autor:in)

    Erschienen in:

    Erscheinungsdatum :

    01.10.2022




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Energy-Optimal Solution to the Lambert Problem

    Leeghim, H | Online Contents | 2010


    Energy-Optimal Solution to the Lambert Problem

    Leeghim, H. / Jaroux, B. A. | AIAA | 2010


    Tisserand-Leveraging Lambert Problem: Formulation, Solution, and Applications

    Zhang, Yu / Yang, Hongwei / Li, Shuang et al. | AIAA | 2025


    Uncertain Lambert Problem

    Schumacher, Paul W. / Sabol, Chris / Higginson, Clayton C. et al. | AIAA | 2015