In this paper, the stiffness and mass per unit length distributions of a rotating beam, which is isospectral to a given uniform axially loaded nonrotating beam, are determined analytically. The Barcilon–Gottlieb transformation is extended so that it transforms the governing equation of a rotating beam into the governing equation of a uniform, axially loaded nonrotating beam. Analysis is limited to a certain class of Euler–Bernoulli cantilever beams, where the product between the stiffness and the cube of mass per unit length is a constant. The derived mass and stiffness distributions of the rotating beam are used in a finite element analysis to confirm the frequency equivalence of the given and derived beams. Examples of physically realizable beams that have a rectangular cross section are shown as a practical application of the analysis.


    Zugriff

    Zugriff prüfen

    Verfügbarkeit in meiner Bibliothek prüfen

    Bestellung bei Subito €


    Exportieren, teilen und zitieren



    Titel :

    Rotating Beams Isospectral to Axially Loaded Nonrotating Uniform Beams


    Beteiligte:
    Kambampati, Sandilya (Autor:in) / Ganguli, Ranjan (Autor:in) / Mani, V. (Autor:in)

    Erschienen in:

    AIAA Journal ; 51 , 5 ; 1189-1202


    Erscheinungsdatum :

    01.05.2013




    Medientyp :

    Aufsatz (Zeitschrift)


    Format :

    Elektronische Ressource


    Sprache :

    Englisch





    Nonrotating Beams Isospectral to Tapered Rotating Beams

    Kambampati, Sandilya / Ganguli, Ranjan | AIAA | 2016


    Nonrotating Beams Isospectral to Tapered Rotating Beams

    Kambampati, Sandilya | Online Contents | 2016



    Isospectral systems for tapered beams

    Subramanian, G. | Online Contents | 1996